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Metadynamics convergence law in a multidimensional system
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Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to
reconstruct the free-energy surface as a function of the relevant collective variables s. In Bussi ef al. [Phys.
Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased
estimate of the free energy F(s). We here study the convergence properties of this approach in a multidimen-
sional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo
metadynamics simulation of an Ising model the time average of the history-dependent potential converge to
F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal
to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately
independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows
recovering an accurate estimate of F(s). These results have been obtained introducing a functional form of the
history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy

landscape.
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In the last few years the use of non-Markovian sampling
techniques has emerged as a paradigm in computational sci-
ence. Prominent examples are the Wang-Landau [1] and
metadynamics [2] approaches that have, respectively, be-
come popular in the statistical physics [3] and in the compu-
tational chemistry and biophysics community [4,5]. These
methods, although different, are based on similar ideas.
Wang-Landau is formulated in a Monte Carlo (MC) frame-
work and aims at calculating the density of states g(E) by
iteratively flattening the energy histogram n(E). This is
achieved by making the acceptance of the move depend on
the reconstructed 1/g(E) up to that moment. Each time a
certain move is proposed g(E) is multiplied by a factor f
>1. Once n(E) is “flat,” f is reduced and n(E) is reset to
zero. This process is repeated until f becomes smaller than
some predefined value. Metadynamics is normally formu-
lated in a molecular-dynamics framework and aims at calcu-
lating the free energy F as a function of collective variables
(CVs) s that are explicit functions of the system coordinates.
Like in Wang-Landau, this is achieved by flattening the his-
togram as a function of these CVs: the normal molecular-
dynamics forces are combined with forces derived from a
history-dependent potential V(s) defined as a sum of Gaus-
sians of height w centered along the trajectory in CVs space.

These two methods, Wang-Landau and metadynamics,
have in common the idea of using an history-dependent
(non-Markovian) process for forcing the system to flatten the
probability distribution as a function of the relevant vari-
ables. However, in order to recover the correct (equilibrium)
thermodynamic properties the two algorithms adopt a differ-
ent strategy. In metadynamics, the history-dependent poten-
tial is assumed to be an estimator of the free energy also if
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the history-dependent potential is upgraded with Gaussians
of finite w. This assumption is justified by the proof given in
Ref. [6] that the history-dependent potential is an estimator
of the ' whenever the dynamics along the variable biased by
metadynamics is much slower than the dynamics along all
the other degrees of freedom (“‘adiabatic separation”). Addi-
tional fictitious coordinates [7] or a suitable discretization
procedure [2] can be employed to enforce, in generic many-
body systems, this time-scale separation. However, in prac-
tical applications adiabatic separation can be achieved only
approximately. In Wang-Landau equilibrium properties are
recovered in a different manner. At the end of the simulation,
the modification factor f converge to a number close to one,
and the bias becomes approximately time independent. Thus,
the final analysis is performed on a histogram constructed in
a quasiequilibrium process. A similar strategy has been suc-
cessfully adopted also in a metadynamics-based scheme [8].

In this Rapid Communication we numerically show that
neither adiabatic separation nor an iterative reduction in w is
necessary to obtain a reliable estimate of F in non-
Markovian sampling. We consider a two-dimensional Ising
model with ferromagnetic nearest-neighbor interaction and
periodic boundaries conditions [9]. For this system we apply
a history-dependent MC scheme using ideas from both
Wang-Landau and metadynamics [10] with a collective vari-
able, the magnetization per spin, that is not adiabatically
separated from the other coordinates. Despite of this, the
average among history-dependent potential profiles at differ-
ent times converge to an accurate estimate of the free energy.
Remarkably, the convergence law of the error decays to zero
like the one of an umbrella sampling [11] performed in
optimal conditions, namely, with a bias equal to the negative
of the free energy. This behavior turns out to be approxi-
mately independent on the details of the procedure, e.g., the
value of w.

To achieve stationary fluctuations of the history-
dependent potential around the correct F it was necessary to
solve a technical problem. In metadynamics for reducing the
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computational cost it is customary to use finite width Gaus-
sians that “fill” the free-energy surface very quickly. On the
other hand, finite-width Gaussians can induce systematics
errors at the boundaries () of the CVs space [4]. These
errors are due to the fact that a sum of Gaussians cannot
accurately reproduce discontinuities on the free-energy pro-
file. The presence of discontinuities is common for several
types of CVs that are intrinsically limited, e.g., atom coordi-
nation numbers, etc. [4]. At the beginning of the simulation
these errors are small and are usually overlooked, but at long
times they can become important, preventing the system
from reaching a stationary state. In Ref. [6] it was shown that
if the component of the free-energy gradient in the direction
normal to dQ) vanishes at the boundaries [V,F(9)=0], the
systematic errors can be eliminated by choosing a functional
form for the history-dependent potential that satisfies the
same condition [V, V;(dQ)=0]. In this Rapid Communica-
tion we introduce a more general procedure that eliminates
systematic errors even if V,F(J9Q) # 0, like in the case of the
Ising model.

The algorithm is implemented as follows. A history-
dependent potential V; is included in the Boltzmann factor
of the Metropolis algorithm. At the beginning of the simula-
tion Vj; is set to zero. Then a random move x—Xx’ is pro-
posed. The acceptance probability of the move is

P(x — x',1) = min{l,exp(- BE(X") + V5(s(x),1)
- E(x) - Vg(s(x),0)]}, (1)

where E(x) is the energy of the system and S is the inverse
temperature [10]. At each step the history-dependent poten-
tial is updated as

{ s s<x>|2}
Vo(s,t+1)=Vg(s,t) +wexp| - ——5— | (2)
285
where w is the height of the added Gaussian and s is its
width. After a sufficient time, hereafter call the “filling time”
tr, Vi relaxes to its “equilibrium” shape approximately com-
pensating the underlying free energy. After 7, the system
diffuses freely in s [4]. In this scheme, like in Wang-Landau
sampling, the history-dependent potential iteratively reduces
the probability of the system to remain in the same state. At
the same time, the Boltzmann factor keeps the system in
regions of relevance at the temperature of interest.
Systematic errors in the free-energy reconstruction close
to d() are eliminated in the following manner. To simp-
lify the notation, we here assume the CV space is one-
dimensional and defined by the equation s=0, with the
boundary at s=0. The procedure can be straightforwardly
generalized to multidimensional CVs space, etc. If the sys-
tem is in s, one extra Gaussian is added in —s with the scope
of iteratively imposing that, in a suitably chosen interval
around s=0,

V(=s,1) = 2V5(0,1) = V(s,1). (3)

This property ensures that, at stationary conditions, the
history-dependent potential is approximately linear close to
the boundary, but it does not impose the value of its deriva-
tive that is iteratively determined by the thermodynamic bias.
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FIG. 1. Sum of the reference free energy and the history-
dependent potential [F(s)+Vg(s)] as a function of s. For a one-
dimensional overdamped Langevin model, with a reflective wall at
s=0 and a linear free energy F (s):éfss (dot-dashed line). The
following parameters were used 8s=0.05, w=0.3, 8=1.0, b=-1.0,
and a diffusion coefficient of D=2.0. The results are shown for
different simulations times (solid lines), (a) normal metadynamics
(“Old algorithm™) and (b) metadynamics including the proposed
boundary correction (“New algorithm”) with y=24s.

In practice, the extra Gaussian is added according to the
following rules:

(i) An interval centered in 0 is chosen, whose width y is
of the order of Js.

(ii) If s < x another Gaussian centered in —s and with the
same width and height is added.

(iii) If s> y another Gaussian centered in —s and with the
same width is added. In this case, the height of the extra
Gaussians depends on V; and is given by

w=[2V5(0,1) = V(= 5,1) = V(5,0 Iy (s), (4)

where y(s)=1/[1+(s/(4)))'] with I=10.

The second factor in Eq. (4) is approximately one for |s|
<4y and goes to zero for |s|>4y. This ensures that V; goes
smoothly to zero in the unphysical region.

The proposed boundary correction scheme was tested by
performing a metadynamics simulation on a one-dimensional
overdamped Langevin model, with a reflective wall at s=0
and a linear free energy F(s):%m%s (see Fig. 1). b is a di-
mensionless parameter that defines the slope of the free en-
ergy, B=1 and ds=0.05. In Fig. 1, it is shown that, for b
=—1 and y=26s, the algorithm (“New algorithm” in figure)
is capable of producing a V; that compensates F(s) almost
exactly [F(s)+ V(s) =const]. Instead, if the extra Gaussians
are not added (“Old algorithm™), large systematic errors are
developed close to the boundary, and the system cannot
reach a stationary state. It was verified that for values of x
e[1.58s5,36s], [ €[4,20], and b €[-10,10] the error does
not change significantly.

The algorithm described above was applied to a 16 X 16
two-dimensional classical Ising model. As a collective vari-
able we used the magnetization per spin m. Clearly, the evo-
lution of this system takes place in the 16> dimensional space
of its spins variables, and it cannot be expressed as a one-
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FIG. 2. (Color online) (a) and (b) Sum of the reference free
energy (dot-dashed line) and the reconstructed history-dependent
potential [F(m)+ V(m)] as a function of the magnetization per spin
for B=1./1.86, ds=1.4X 1072, w=1.0X 10~* reconstructed profiles
at different MC times (solid lines), (a) without and (b) with the
boundaries correction using y=23Js. (c) V; profiles reconstructed at
different MC times, together with the reference profile F(m) (thick
line).

dimensional Markov process in m alone. This means that
m is not adiabatically separated from the other degree of
freedom as it would be required to apply the results of Ref.
[6]. The height and the width of the Gaussians were w=1.0
X 10~ and &s=1.4 X 1072, respectively. For this system, the
“exact” free energy F(m) was calculated in a long umbrella
sampling simulation [11].

In Figs. 2(a) and 2(b) we plot F(m)+V(m) at different
times for the “Old” and the “New” algorithm. Like in the test
model of Fig. 1(a), the old algorithm generates systematic
errors in the calculation of F' close to the boundaries. More-
over, these errors increase as a function of MC time, and the
simulation cannot reach a stationary state. In Fig. 2(b) we
plot F(m)+V;(m) for the new algorithm using y=26s, at
the same MC times of panel a. The boundary corrections
introduced in this work significantly reduce the systematics
errors and allow the simulation to reach a stationary state
where the history-dependent profiles are approximately par-
allel to each other. In Fig. 2(c) it is shown that the V;(m, 1) at
different MC times (thin lines) oscillates around the exact
free-energy profile F(m) (thick line). Thus the algorithm is
able to reach a stationary condition in which the history-
dependent potential is, at each time ¢, a reliable estimator of
the equilibrium free energy.

In order to be more quantitative on this point, following
Ref. [4] we considered the arithmetic average of all the pro-
files between the filling time 77 and the time 7>t

Vi(s,t) = f dt'Ve(s,t'). (5)

—IF Ip

If Vg(s,t) after tp is an unbiased estimator of —F,
lim,_., V5(s,t)=—F(s), modulus an irrelevant constant, that
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FIG. 3. (Color online) Square of the error in the reconstructed F
as a function of simulation time after the filling time #z, for two
different cases: (a) a Langevin dynamics in a square well performed
with B=1, D=0.01, 85=0.025, and y=26s. The free energy is com-
puted by umbrella sampling (black line) and metadynamics with
four values of the Gaussian high w=(0.20,0.05,0.01,0.003). (b) A
16 X 16 two-dimensional Ising model, calculated for B=1/1.86,
85=1.4x 1072, and y=25s. The free energy is computed by um-
brella sampling (black line) and metadynamics with four values of
the Gaussian high w=(1.0X1073,5.0X107*,1.0X 1074,1.0
X 107°), taking as a reference an accurate umbrella sampling calcu-
lation. The dotted line is the estimated error in the reference F

In(e?) =-6.1.

ref>

will be neglected in the following to simplify the notation. At
finite simulation time, V(s,7)+F(s) will show deviations
from zero that become smaller for large ¢. To study how the
error depends on time, we first considered the case of a one-
dimensional overdamped Langevin process in a square well.
A flat free-energy profile [F(s)=0] has been employed with
reflecting boundaries at —1 and 1. The metadynamics algo-
rithm has been used to reconstruct the free energy profile.
For comparison, a trajectory was also generated without the
metadynamics bias. In this case the free-energy profile
[F,(s,1)] was estimated as

FM(S’t) == ﬂ_l ln[n(s7t)]’ (6)

where n(s,?) is the histogram of the visited positions up to
time #. This corresponds to an ideal umbrella sampling simu-
lation, in which the free energy is perfectly compensated by
the bias. The error of the reconstructed free energy at a given
simulation time ¢ was calculated as

1!

e(t)? = EJ [F,..(s",1) —F,ef(s')]zds' , (7)
-1

where F) m:V_G for the metadynamic case, F,,.=F, for um-

brella sampling, and F,,s)=0 for both cases. The average

was taken over 100 statistically independent runs.
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In Fig. 3(a) £(r)? is plotted as a function of simulation
time in logarithmic scale. It can be seen from the figure that
the error of metadynamics, after an initial transient that in-
creases when w is reduced, decreases with the same law of
an ideal umbrella sampling, namely, with the inverse square
root of

e~ 1N (8)

Remarkably, for large ¢ the errors depends weakly on w and
for w=0.05, it is practically indistinguishable from the ideal
umbrella sampling case. This is not a trivial result since it
was demonstrated that the error on a single profile V; grows
with \w [6]. This corresponds to the error observed at =0
(i.e., at filling time). The behavior observed in Fig. 3 can be
rationalized assuming that profiles obtained with large w
have large errors but decorrelate more quickly. The accuracy
gained from fast decorrelation approximately compensates-
the accuracy lost due to large w. Indeed, for small w, taking
the average between different profiles does not improve the
accuracy, as the V profiles are strongly correlated. This is
the origin of the plateau observed in the error curves for
small time; consistently the plateau becomes longer for small
w.

To investigate the effect of a violation of adiabatic sepa-
ration on these results, we repeated all the analysis for the
two-dimensional Ising model. In this case, as a reference, we
performed umbrella sampling using as a bias the same F,,,
=F(m) of Fig. 2. The error as a function of simulation time is
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shown in Fig. 3(b). Clearly, also in this case the error decays
to zero following the same law Eq. (8) of the ideal umbrella
sampling. Moreover, like in the metadynamics simulation on
the Langevin system, the decay law Eq. (8) depend weakly
on the height w of the Gaussians.

In summary, we have shown that the history-dependent
potential of metadynamics, after a transient, fluctuates
around a well-defined average that, for the system considered
in this work, is a good approximation of the negative of the
free energy. Stationary conditions can be reached thanks to a
procedure that eliminates the systematic errors at the bound-
aries generated by finite-width Gaussians. By applying this
technique to a two-dimensional Ising model we showed that
a stationary state is reached even for a system which lacks
adiabatic separation between the biased CV and the remain-
ing degrees of freedom. The error of the algorithm in recon-
structing the equilibrium free energy, after a transient, decays
like umbrella sampling performed in optimal conditions. An-
other important result is that this decay law on the error
holds independently on the filling speed determined by w.
The numerical evidence presented here does not allow ex-
cluding that systematic errors might appear when looking at
very fine details of the free-energy surfaces, possibly due to
the violation of adiabatic separation and/or to residual effects
of the boundaries. However, these errors, if present, are so
small [In(€?) =-6.1= e<ekzT] that are not expected to
affect the validity of the approach in most practical applica-
tions.
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